Music Transformer

Table of Contents

Understanding Relative Positional Attention in Transformers Relative Global Attention - Music Transformers <u>Skewing Procedure</u> References

Understanding Relative Positional Attention in Transformers

Suppose we have a musical sequence of notes of length L, then we find the pairwise relative distance between the i^{th} and j^{th} elements of the sequence and obtain a matrix of shape L * L. Now we can limit the relative distance between two elements such that the distances are within manageable range. We clip the values of this matrix to the range [-max_relative_distance, max_relative_distance], where max_relative_distance can be thought of as the range or window till which an element in the sequence can see. Since embedding indices of the matrix should be non-negative, we shift the clipped distances by adding max_relative_distance.

Our shifted matrix will be of shape L * L, then if we want we can expand this matrix to have H number of heads, such that the new shape of the matrix can be H * L * L. Next, we initialize a learnable matrix \mathbb{E} with <code>[2*max_relative_distance+1, D]</code>, where D is the embedding dimension. This matrix maps the relative distances to their corresponding embedding vectors. The relative positional embedding matrix \mathbb{R} is constructed by indexing \mathbb{E} into the initialized matrix based on the relative distances in the shifted matrix. The shape of this matrix comes out to be L * L * D. We use the shifted matrix \mathbb{E} as a look up table, retrieve the relative distance k from the pair (i, j) to index and retrieve the embedding $\mathbb{E}[k, :]$. This gives us our relative positional embedding matrix \mathbb{R} .

For each head, we have the \mathbb{R} matrix which we multiply with \mathbb{Q} to obtain S_{rel} . The overhead is that this total computation takes $O(L^2, D)$ space complexity and hence restricting its use for longer sequences.

Relative Global Attention - Music Transformers

The main problem in computing S_{rel} comes from explicitly calculating the relative distances for all pairs of i and j in the sequence. This involves indexing into the embedding matrix \mathbb{E} for every pair (i, j). Instead in the paper, they implement an interesting trick by initialized the embedding matrix \mathbb{E} with the embedding dimension D, which results in a matrix, assume \mathbb{M} , of shape L * D and instead of gathering the relative information for every i and j as in the previous method, they directly multiply \mathbb{M} with \mathbb{Q} to obtain an L * L matrix. The trick is that they don't calculate the relative position for each i and j, instead we do it for i and a relative offsetr and then using the skew procedure in the paper we map r to j. This results in the reduced complexity due to the shapes of the matrices.

Skewing Procedure

The algorithmic approach to obtain the equivalent matrix S_{rel} is to first pad the the masked matrix M with a buffer so that no values are cut out or fall off the matrix resulting in preserving the relative alignment. We reshape the matrix and map the indices using the formula $j_k = r - (L-1) + i_q$ from a absolute-relative indexing to absolute-absolute indexing. We then take the last L rows of the matrix to form the matrix S_{rel} of shape L * L.

References

- 1. Music Transformers
- 2. Self-Attention with Relative Position Representations
- 3. Hao Hao Tan's Blog Post
- 4. Self-Attention-with-Relative-Position-Representations Github
- 5. Music Transformer Pytorch